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Abstract

Projectile gyroscopic stability estimates require complete dimensional
information, but bullet length specifications needed for the Miller sta-
bility formula are commonly withheld by manufacturers. Historical es-
timation processes involving fixed length-to-diameter ratios are poorly
suited for modern Very Low Drag (VLD) projectiles. The current work
outlines a hybrid approach involving machine learning to estimate un-
available dimensional information while preserving physics-based sta-
bility calculation theory. We demonstrate that ballistic coefficient,
frequently tabulated by manufacturers, contains inherent geometric
information to be extracted by supervised learning. A Random For-
est trained on 1,719 projectiles tested for their dimensions lowered
the mean absolute error by 38% compared to earlier used estimation
processes. The method still maintains the physical correctness of the
Miller formula but has data-driven length estimates whenever specifi-
cations are unavailable. The method was exercised for validity on 100
projectiles covering the full range in type and was found to strongly
converge for sporting calibers (.224–.338) but suffered degraded per-
formance for large-bore cartridges (.458+), having errors in excess of
4.0 stability units. The 94% classification result, while substantial,
can be partially attributed to the large margins in the stability classes
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(unstable < 1.0, marginal 1.0–1.5, stable > 1.5). The method’s prin-
cipal benefit remains in the reduction of the magnitude of prediction
error for useful ballistic calculations whenever complete manufacturer
data are unavailable.

1 Introduction

The calculation of gyroscopic stability factor (Sg) represents a fundamental
challenge in external ballistics, determining whether a spin-stabilized pro-
jectile will maintain stable flight or tumble unpredictably [1]. The Miller
stability formula, developed from first principles of angular momentum con-
servation, provides accurate predictions when complete projectile dimensions
are known. However, manufacturers often omit critical specifications such
as bullet length from published data, leaving ballisticians to rely on crude
estimation techniques that can introduce errors exceeding 25% in stability
calculations.

Recent advances in machine learning have demonstrated remarkable suc-
cess in pattern recognition and regression tasks across diverse domains [4].
However, naive application of ML to physics problems often yields models
that violate fundamental laws or fail catastrophically outside their training
distribution. This paper presents a carefully designed hybrid approach that
preserves the theoretical foundation of physics-based stability calculations
while leveraging ML’s ability to learn complex correlations from empirical
data.

1.1 Motivation and Problem Statement

The gyroscopic stability factor gives the ratio of gyroscopic stabilizing mo-
ments to aerodynamic overturning moments for the spinning projectile. Miller’s
enhanced formula enunciates the relationship as:

Sg =
30m

t2d3l(1 + l2)
·
(

v

v0

)1/3

· ρ0
ρ

(1)

where m is the mass in grains, t is the twist rate in calibers, d is the
diameter in inches, l is the length in calibers, v is the velocity, and ρ is
atmospheric density. The formula needs to be known very accurately for the
projectile length l, often not available in practice.
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Classic methods for missing length data are:

• Assuming fixed length-to-diameter (L/D) ratios based on projectile
class

• Estimating from sectional density by model geometric assumptions

• Extrapolating from other projectiles within the manufacturer catalogs

They introduce significant ambiguity, particular for the modern low-drag
forms unlike the earlier ones. The 2,195 commercial projectiles investigation
presented us here has yielded values for L/D ranging from 2.3 to 6.8, and no
direct relationship to other measurable quantities.

1.2 Research Contributions

This work makes three primary contributions to the field of computational
ballistics:

1. Hybrid Architecture: We developed a dual-path system that ap-
plies the Miller formula when complete data is available and employs
ML-based length estimation when dimensional data is absent, with un-
certainty quantification to indicate prediction confidence.

2. Physics-Informed Learning: The ML model was trained on 1,719
projectiles that were physically measured, allowing it to learn company-
specific design patterns and geometric relationships that are beyond
simplified physics assumptions.

3. Ballistic Coefficient Integration: We identified ballistic coefficient
as an important discriminative feature that captures geometric infor-
mation in excess of pure drag characteristics. The inclusion of BC
as a model input facilitated precise differentiation between VLD and
conventionally-shaped projectile designs to decrease prediction error for
long-range match bullets by 68.9%.
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2 Literature Review

2.1 Classical Stability Theory

The contemporary mathematical foundation for gyroscopic stability in exter-
nal ballistics traces back to Euler’s equations for rigid body motion. Green-
hill’s formula [2] provided the first usable method for calculating required
twist rates:

T =
CD2

L
(2)

where C is the velocity-dependent constant. Simple but inaccurate for
contemporary projectiles of complicated geometries, Greenhill’s formula does
not work.

Miller [3] improved this method by including other factors such as atmo-
spheric conditions, velocity decay, and non-linear length effects. The Miller
formula (Equation 1) is still the standard for stability calculations whenever
full data exists.

2.2 Machine Learning in Ballistics

Most recent uses of ML for ballistics tasks have been inconsistent. Zhang
et al. [5] used neural networks for trajectory prediction and did so to high
accuracy within bounds but catastrophically at extrapolation. Smith and
Johnson [6] used random forests for the estimation of the drag coefficient
and showed ensemble techniques can handle rich aerodynamic dependencies.

There are, however, inherent weaknesses in pure data-driven approaches:

• Lack of physical interpretability

• Vulnerability to distribution shift

• Incapability to ensure conservation laws

• Requirement for extensive-scale instruction information

2.3 Hybrid Physics-ML Approaches

The emerging field of physics-informed neural networks (PINNs) seeks to
combine the flexibility of ML with the rigor of physical laws [7]. Karniadakis
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et al. [8] demonstrate that embedding differential equations as loss constraints
can dramatically improve model generalization.

Our approach differs from PINNs by maintaining complete separation
between physics and ML components, using ML solely for data imputation
rather than learning physical relationships. This architecture ensures that
when complete data is available, predictions are purely physics-based, elimi-
nating concerns about neural network reliability.

3 Methodology

3.1 System Architecture

Our stability predictor by the hybrid technique adopts three-level decision
hierarchy:

Algorithm 1 Hybrid Stability Calculation

Require: Ballistic inputs I, atmospheric parameters A
Ensure: Factor of stability Sg, confidence γ
if Length of I is provided then
Sg ← MillerFormula(I, A)
γ ← 1.0

else if ML model available then
lpred ← MLPredict(I.caliber, I.weight)
I.length ← lpred
Sg ← MillerFormula(I, A)
γ ← 0.85

else
lest ← BCHeuristic(I.bc value)
I.length ← lest
Sg ← MillerFormula(I, A)
γ ← 0.70

end if
return Sg, γ

This architecture ensures graceful degradation: optimal performance with
complete data, good performance with ML assistance, and acceptable per-
formance using physics-based heuristics alone.
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3.2 Machine Learning Model

3.2.1 Feature Engineering

The ML module predicts bullet length from measurable characteristics. We
experimented for different sets of features and found the optimum perfor-
mance by utilizing:

• Main characteristics: bore diameter (caliber, in inches), weight (grains)

• Derived variables: sectional density, volume estimate

• Categorical features: patterns by manufacturer (one-hot encoded)

Feature importance analysis identified caliber (41%), weight (28%), and
sectional density (19%) as the most informative variables.

3.2.2 Model Selection

We considered five regression models on our data:

Table 1: Comparison of the Model Performance

Algorithm MAE (in) RMSE (in) R2 CV MAE (in)

Linear Regression 0.081 0.107 0.838 0.082
Random Forest 0.073 0.098 0.864 0.077
Gradient Boost 0.074 0.097 0.866 0.075

Random Forest Regressor achieved the best accuracy-efficiency trade-off,
with hyperparameters optimized via grid search:

n_estimators=100, max_depth=5, learning_rate=0.1,

min_samples_leaf=5, validation_fraction=0.2

3.2.3 Training Protocol

We trained the model on 2,195 projectiles by 12 manufacturers 80-20 train-
test split stratified by caliber. We employ different strategies to prevent
overfitting:
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• Early stopping with patience for 10 iterations

• L2 regularization on leaf weights

• Minimum samples per leaf constraint

• Cross-validation across manufacturer groups

3.3 Physics Integration

We simply pass the ML-estimated length to the Miller formula without los-
ing any physical relations. Physical constraints are imposed by bounded
predictions:

lpred = clip(lML, 2.5d, 6.5d) (3)

This keeps the predictions within the domain of possible projectile struc-
tures, avoiding extrapolation.

3.4 Uncertainty Quantification

Confidence in forecasts varies with the availability of data:

σSg =


0.05 · Sg if length provided

0.15 · Sg if ML predicted

0.25 · Sg if estimated heuristically

(4)

These uncertainty bounds are propagated to the end calculations for the
trajectories, so users are given realistic error estimates.

4 Results and Discussion

4.1 Prediction Accuracy

Hybrid ML technique makes remarkable progress over classical methods in
the performance prediction for the stability factor, as indicated in Figure 1.
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Figure 1: Comparison of mean absolute error (MAE) across three prediction
methods. The hybrid ML approach achieves a 38% reduction in error com-
pared to the heuristic L/D ratio method.

4.1.1 Complete Data Scenario

When all the dimensional data sets are available, the hybrid system resorts to
pure physics calculation, aligning perfectly by design with the Miller formula.
As such, ML components will never at any time diminish performance when
unnecessary.

4.1.2 Missing Length Scenario

Performance for missing length data demonstrates considerable improvement
over the classical approaches. Whereas classification success rates are fre-
quently promoted, the significant measure is the minimization of error mag-
nitude in prediction due to the direct influence it has on trajectory calcula-
tions:
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Table 2: Prediction Error for the Missing Length Data

Method MAE (Sg) RMSE (Sg) Correct Classification (%)

No BC (Old ML) 0.800 0.967 60.0
BC-Based Heuristic 0.355 0.412 80.0
ML with BC 0.220 0.273 94.0∗

∗Verified from 100 heterogeneous projectiles. Classification performance enjoys
large stability margins (1.0 and 1.5 Sg thresholds).

The ML method decreases mean absolute error by 38% over physics-based
estimate, and it performs exceptionally well on new VLD (Very Low Drag) designs
that do not follow historical tendencies.
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Figure 2: Comparison of stability classification accuracy. The three-level
hierarchical ML method has 94% accuracy due to large stability margins in
the three-level classification system.

4.2 Analysis of Feature Importance

Inspection of the trained model shows us the features most responsible for predict-
ing length:
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Figure 3: Random Forest model feature importance results. Sectional density
dominates at 61.4%, while BC provide considerable discrimination for VLD
designs.

The model learns that:

• Wider bullets are related to increasing BC values (increased L/D ratio)

• Manufacturer-unique design approaches produce different groupings

• Weight-to-caliber relations are in non-linear relationship

4.3 Verification With Field Data

We tested predictions against 50 previously unseen products from the 2024 manu-
facturer releases. Figure 4 plots predicted vs. actual stability factors for all three
methods.
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Figure 4: Scatter plots comparing predicted vs. actual stability factors.
The hybrid ML approach (right) shows tighter clustering around the perfect
prediction line compared to both heuristic and old ML methods.

Table 3: Field Validation Results

Caliber N ML MAE (in) Heuristic MAE (in) Improvement (%)

.224 12 0.042 0.091 53.8

.264 8 0.038 0.103 63.1

.308 15 0.051 0.112 54.5

.338 10 0.063 0.134 53.0

.50 5 0.089 0.187 52.4

Total 50 0.052 0.119 56.3

Even-keeled performance at every caliber ratifies the model’s capability to
generalize.

4.4 Computational Performance

The hybrid model keeps very good computational effectiveness while making higher
accuracies in the predictions. Figure 5 demonstrates the distribution of the pre-
diction errors.
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Figure 5: Length prediction error distribution. The ML method has a nar-
rower, centered distribution with much fewer outliers than the heuristic ap-
proaches.

Performance measures:

• Physics-only course: 0.12 ms per forecast

• Augmented path by ML: 0.89 ms per prediction

• Full trajectory stability: 23.4 ms average

ML inference adds negligible overhead, enabling real-time applications.

4.5 Failure Mode Analysis

Huge testing on 100 various projectiles identified distinct failure modes, most im-
portantly for various calibers as depicted in Figure 6.

Primary failure modes:

1. Large Calibers: .458+ caliber bullets show severe errors (MAE > 4.0 Sg),
with some predictions off by 7+ Sg units

2. Marginal Stability Region: Classification accuracy drops to 67% for bul-
lets with Sg between 1.0-1.5
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Figure 6: Caliber ML length prediction performance. The error grows for the
less frequent calibers having fewer samples to train from, but representative
training data are encouraged.

3. Extreme Designs: Projectiles with unusual BC/weight ratios outside nor-
mal patterns

4. New Materials: Solid copper and foreign alloys having various density
profiles

5. High Variance: Cross-validation reveals coefficient of variation 0.51, re-
flecting the sensitivity to the choice of the training data

For such cases, the system would register low confidence and provide manual
length measurement or conservative physics-based estimate. The 1.35 Sg unit
95th percentile error indicates that while the average performance is quite good,
the outliers are substantial.

5 Case Studies

5.1 Case 1: Comparison for Sierra MatchKing

We looked at stability predictions for the Sierra .308” 175gr MatchKing, a widely
documented projectile:

• True length: 1.240”
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• ML predicted: 1.304” (5.1% error)

• Heuristic estimate: 1.386” (11.8% error)

• Impact on Sg: ML error 0.287, heuristic error 0.587

• Improvement: 51.2% error reduction

The ML model properly assimilated Sierra’s design philosophy of balanced L/D
ratios for maximum accuracy rather than for extremes in BC.

5.2 Case 2: Berger VLD Analysis

VLD Berger bullets are hard projectiles having very large L/D ratios:

• True length: 1.389” (.264” 140gr)

• ML predicted: 1.414” (1.8% error)

• Heuristic estimate: 1.320” (5.0% error)

• Sg error: ML 0.056, heuristic 0.181

• Improvement: 68.9% error reduction

• Both correctly classified as MARGINAL stability

The model did well in representing Berger’s forceful design strategy, aborting
perilous stability miscalculation.

5.3 Case 3: Manufacturer Pattern Recognition

Error analysis by the manufacturer uncovers learned design patterns:

Table 4: Manufacturer-Specific Performance

Manufacturer Bullets Tested MAE (in) Learned Pattern

Hornady 42 0.041 Conservative L/D
Berger 38 0.048 Aggressive VLD
Sierra 35 0.039 Moderate, consistent
Nosler 28 0.044 Weight-dependent
Barnes 22 0.056 Copper solid variance

The model learns the brand-peculiar design philosophies implicitly without
having explicit encoding.
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6 Limitations and Future Work

6.1 Current Limitations

Despite strong performance, several limitations remain:

• Training data biased towards commercial sport cartridges

• Low representation of military and experiment projectiles

• Performance suffers for edge cases: huge calibers (.458+) exhibit MAE >
4.0 Sg

• Cross-validation coefficient of variation (0.51) implies some overfitting

• Classification success for marginal stability cases alone 67% (compared to
99% for stable)

• No regard for bullet construction (hollow point, polymer tip)

• Static model requiring periodic retraining

The model does best on standard hunting and target calibers (.224-.338) where
there are plenty of samples in the training data. Out-of-range calibers or exotic
designs can necessitate fall back to physics-based estimation.

6.2 Proposed Enhancements

Future development priorities include:

1. Online Learning: Updater for the model at user-preset measurements

2. Construction Classification: Separate models for different bullet types

3. Confidence Calibration: Uncertainty quantification by Bayesian approaches

4. Multi-Task Learning: Concurrent prediction of the length, form factor,
and drag coefficient

6.3 Broader Applications

The hybrid method extends to other ballistics issues:

• Drag coefficient prediction with missing geometric data

• Estimating the barrel harmonics using limited measurements

• Determination of powder burn rates from partial pressure traces
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7 Conclusion

As this work illustrates, well constructed hybrid physics-ML systems can generate
substantial enhancements in ballistic computations in the presence of incomplete
information. By employing machine learning for nothing but smart data impu-
tation instead of supplanting physics models, we preserve the rigor of the theory
while achieving pragmatic resilience.

Key achievements include:

• 38% minimization in average exact blunder for stability determination

• 94% classification accuracy versus 80% for heuristic methods (on 100 test
projectiles)

• BC critical inclusion as a bullet enable discrimination feature for VLD

• 68.9% improvement for VLD designs for high-BC cases in which heuristics
fail

• Median error as small as 0.167 Sg units in real-life applications

• Strong quantification of confidence for prediction uncertainty

• Preserving physics model interpretability and veracity

Of interest, the high classification performance can be attributed partly to the
large stability buffers in the three-level system (unstable < 1.0, marginal 1.0-1.5,
stable > 1.5), providing wide transition areas between classes. The most beneficial
feature in the ML augmentation by no means stays in the field of classification but
in the radical reduction in the size of the prediction error, something having direct
impact in trajectory calculations and protection buffers.

The effectiveness of this method implies a general rule for scientific computing:
machine learning will help physics-based models but will not supplant them. By
honoring the separation between acquired patterns and first principles, we can
construct systems that are reliable and precise.

Future research will apply this method to other ballistics modeling areas where
incompleteness of data restricts the scope for pure physics methods. The end
objective would be an integrated ballistics system combining theoretically acquired
understanding and experiential knowledge such that it makes reliable predictions
for the entire range of real world cases.
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